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1 Introducao

A Fisica Estatistica, area de grande sucesso na Fisica, nas tltimas décadas ganhou a computagdo como uma
ferramenta extremamente tutil. Sistemas que exigiriam um tratamento teérico arduo e talvez intransponivel
para serem compreendidos podem agora ser tratados computacionalmente para auxiliar nesse objetivo.

Uma técnica extensivamente usada é a de Monte Carlo, a qual, nesse contexto, propoe-se a facilitar a
avaliacao de médias térmicas no espaco de fase evitando configuracoes altamente improvaveis do sistema e, ao
invés disso, fazendo amostragens nas configuracoes mais representativas. E um poderoso método na modelagem
de magnetos com redes de spins, que aqui serd apresentada com dois algoritmos em particular, o de Metropolis
e de Wolff.

O estudo seréd feito em redes bidimensionais, quadradas, de tamanho LxL, com L inteiro. Em cada par
(X1, X2) da rede é colocado um spin, que sofrera a agio apenas de seus vizinhos imediatos. No caso de aos spins
somente se permitir assumir valores 1 e -1, tem-se o famoso modelo de Ising. Se por outro lado os spins puderem
ser posicionados em qualquer diregao do espaco tridimensional, tem-se o modelo de Heisenberg. Também serao
introduzidos defeitos nas ligagoes que medeiam a agdo entre os vizinhos de diferentes formas, simulando a

desordem encontrada em alguns materiais.

1.1 Modelo de Ising

No modelo de Ising, tem-se uma rede bidimensional quadrada em que cada sitio corresponde a um spin, que
pode assumir valores 1 e —1, e cada um deles interage apenas com seus quatro vizinhos imediatos, denominados
primeiros vizinhos (figura 1).

A energia da configuragio é

E=7J) SiS;+B>_ S (1)
(ig) i

Em que S; é o valor do spin no sitio i, B é o campo magnético externo e J a constante de troca magnética.
Esta determina a tendéncia de os spins se alinharem paralela ou antiparalelamente, dependendo se J < 0 ou
J > 0.

Neste projeto, toma-se sempre B = 0, de modo que daqui em diante esse termo serd omitido. Além disso,
sdo utilizadas condigbes periodicas de contorno, com o vizinho de cima do sitio (z, L), na fronteira, sendo (z, 1)
e o da direita de (L, y) sendo (1,y).

O sistema fica em contato com um reservatério térmico. Para uma dada temperatura T # 0, a probabilidade
de cada microestado «, isto é, configuracao particular da rede com energia E,, é dada pela distribuicao de
Boltzmann:

1 —-E,

P, =— .
7 P LT

(2)

kp € a constante de Boltzmann, que aqui serd adotada como unitaria (kg = 1). Z é a fungao de particio,
obtida impondo-se ) P, = 1.

Como tratamos de sistemas em equilibrio, P, ndo depende do tempo.

A magnetizacado total M é simplesmente a soma dos spins da rede, isto €, M = ). S;.

A partir das grandezas anteriores, determinam-se suas flutuagdes. Por exemplo: Para obter o calor especifico,
definido por C' = (0FE/90T)y, parte-se do valor médio da energia,



e da energia quadratica,
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Tomando a derivada parcial de (3) com relagio a (kgT)~! = 3,
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Entao, fica claro que C = e

Por via semelhante, a susceptibilidade magnética é calculada como y = WXB;;J\DQ
O coeficiente de Binder, definido por U = % (1 — %), é util na identificacao de uma transicao de fase. A

intersec¢ao das curvas de U para redes de diversos tamanhos identifica com alta precisdo a temperatura critica.

O fator de % ¢é introduzido para normalizacao, de modo que U — 1 para T" — 0.

1.2 Modelo de Heisenberg

O modelo de Heisenberg difere do anterior em permitir que os spins se orientem em qualquer dire¢do no

espaco tridimensional, mas ainda com moédulo 1. Ou seja, cada spin é

Si = (S7,8¢,87):[Si =1

Assim, a generaliza¢do natural da energia é

E=J) S;-8; (6)
(i)
e a da magnetizagao, M =) . S;.
x € C sao definidos da mesma forma, mas o coeficiente de Binder passa a ser dado por U = g (1 — %)

Como anteriormente, o fator de % é introduzido para normalizagao.

1.3 Modelo de Heisenberg com segundos vizinhos

Até entdo, apenas foram considerados os quatro vizinhos mais proximos. Neste modelo, os outros quatro
nas diagonais, denominados segundos vizinhos, também serdo considerados (figura 1). Além disso, deve-se
diferenciar a interagdo dos primeiros e dos segundos vizinhos com os parametros Ji e Jo, respectivamente, e

assim surge uma nova expressao para a energia,

(i) ((ik))
Esta alteracao origina o fendmeno da frustragao: dado J, antiferromagnético, ndo é possivel satisfazer os

primeiros e segundos vizinhos simultaneamente (figura 2).



Figura 1: Alguns sitios da rede quadrada. Figura 2: Redes mostrando que a frustragao s6 ocorre se Jo
Os sitios unidos por segmentos verdes sao os for antiferromagnética. Spins nos sitios com ’?’ nao podem
primeiros vizinhos do sitio azul; por laranjas, satisfazer primeiros e segundos vizinhos simultaneamente.
os segundos.
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Serdo analisados os efeitos da desordem no modelo com a introdugdo de uma tnica ligagdo de primeiro

vizinho com parametro J; — Ji(1 + A), inicialmente, e em seguida com desordem generalizada, em que todas
as ligagbes de primeiro vizinho terdo J; — J1(1 4+ A) ou J; — J1(1 — A), cada qual com probabilidade 1/2.
A introdugdo de um outro parametro de ordem se mostrara conveniente [1]. Definido por

(Si - Sk) . (Sj — Sl)
[(Si —Sk) - (S; —S))] (8)

Oq —

para cada sitio a, em que os rétulos estdo na figura 1, nele estdo bem codificadas as fases de tiras (figura 3)

que serdo observadas na analise posterior. Tal parametro é do tipo Ising, portanto usa-se como coeficiente de

Binder U = 3 (1 - 54520 ).

Figura 3: Visao planar dos ordenamentos possiveis dos estados fundamentais de redes sob o regime de Hei-
senberg com segundos vizinhos. As tiras caracterizam-se pelo ordenamento ferromagnético em uma dire¢ao
e antiferromagnético na outra (ou vice-versa). A fase de Néel, pelo antiferromagnético em todas as diregdes.

Constata-se que estados fundamentais de tiras ocorrem com Jo/J; > 0,5 e de Néel com Jy/J; < 0,5. A fase
anticolinear também contribui significativamente em alguns casos especificos, como sera visto.
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1.4 Simulacoes por Monte Carlo

A fim de determinar os valores médios das varidveis termodinimicas nos diversos modelos, empregam-se
simulac¢Oes computacionais para fazer diversas amostragens. Como a passagem de um estado a outro do sistema
se d& de acordo com uma regra probabilistica, essas simulagoes devem gerar varidveis aleatérias, caracterizando-
se como simulagoes Monte Carlo.

Os algoritmos de amostragem que serdo apresentados compartilham entre si ainda outra propriedade: a

probabilidade de transi¢do P, do sistema de um estado a para outro b (a e b quaisquer) ndo depende do



caminho tomado até a, mas apenas dos proprios estados a e b, por isso P,, € uma constante. Define-se um
processo dessa natureza como markoviano. Do estado b gerado a partir de a seguird um outro estado ¢, e assim
sucessivamente, formando uma cadeia de Markov.

Para atingir o equilibrio partindo de um estado qualquer, o processo markoviano regendo o sistema deve

satisfazer as condicoes de:

e Ergodicidade: Uma vez que todo estado b tem uma probabilidade de Boltzmann nao nula, dado o tempo
suficiente (computacionalmente, suficientes passos de Monte Carlo), o sistema deve poder atingir qualquer

estado b a partir de qualquer estado a; e

e Balanco detalhado: Para garantir que ap6s atingido o equilibrio se estabelecera a distribuicao de probabi-
lidades de Boltzmann, é preciso que P, P,, = P, Py,. Isto é, o sistema transiciona de a para b tantas vezes

quanto de b para a, em média.

E atil trabalhar com as probabilidades de transicdo representando-as por dois fatores, a probabilidade gqp

de o algoritmo gerar o estado b a partir do a e a taxa A, com que essa transi¢do deve ser realizada. Assim,

Py = gabAab
e a condicao imposta pelo balanco detalhado é

Pab _ gabAab = exp
Pba gbaAba

[=B(Ey — Ea)] (9)

Com esse arcabouco é possivel produzir diversos algoritmos para simular por computacio o sistema de spins

em equilibrio e assim coletar os valores das variaveis termodinamicas.

1.5 Algoritmo de Metropolis

Este ¢ um procedimento que gira um spin por vez e, por isso, cada atuagao pode alterar a energia da
configuragao em no maximo 8.J.

As probabilidades de transi¢do a partir de uma configuracio a sdo escolhidas como iguais para cada estado
final b. Como cada spin de um total de N pode ser girado, g, = 1/N. A partir disso, obtém-se de (9) a razao

entre as taxas de aceitagao
gabAab _ Aab _
gbaAba Aba

O algoritmo de Metropolis utiliza a taxa de aceitacio

exp[—S(Ep — Eq)] (10)

Agp = exp[—B(Ey — E,)], se By > E,
Aup = 1, caso contrario
1.5.1 Implementagao no modelo de Heisenberg
Em uma rede quadrada de spins, de dimensoes LxL, comecando com ¢ = 1,
1. Gera-se uma diregdo (z,y, z) aleatoria, com |(z,y, z)| = 1;
(a) Afere-se a variacdo de energia 6 E' que resultaria se o spin do sitio i estivesse naquela dire¢ao;

(b) Gerarse um numero aleatorio 0 < r < 1;

(c) Se r <exp %, o spin é colocado naquela dire¢ao;



(d) Escolhe-se o proximo sitio (¢ = ¢+ 1) e repetem-se os passos (a) a (d) até que toda a rede tenha sido

percorrida.

Gerar uma direcdo aleatéria em trés dimensoes ndo é trivial como em duas. O procedimento, descrito em

[2], & gerar dois niimeros aleatérios A; e Ag, cada qual no intervalo [—1,1], até que A = A% + A% < 1 e entdo a

direcgdo aleatoria & (2A1v1 — A,245v/1 — A1 — 2A).

1.6 Passo microcanodnico

Esta é uma etapa simples, realizada para diminuir a correlagdo entre uma configuracio e a seguinte, que
consiste em refletir um spin em relacao ao campo gerado apenas pelos seus primeiros e segundos vizinhos,
chamado campo local.

Dado que esse passo ndo altera a energia da configuracio e viola a ergodicidade, ndo pode ser realizado

isoladamente e, assim, deve ser intercalado as rodadas de Metropolis, Wolff ou banho térmico.
1. Afere-se o campo local
4 4
Hp=J1) Sj+J2) Sk (12)
j=1 k=1
agindo em um spin S; da rede gerado pelos vizinhos primeiros S; e segundos Sy;
2. O spin é refletido por esse campo: S; — —S; +2H(H, - S;)/H?;

3. Repetem-se os itens anteriores para todo sitio da rede.

Figura 4: Spin central antes (esquerda) e depois (direita) Figura 5: Angulos a e v utiliza-
da acdo do passo microcanodnico. A seta tracejada verme- dos no algoritmo do banho tér-
lha é o campo local e a tracejada azul é o spin original, mico. v é o angulo entre 2’ e a
antes da acao do passo microcandnico. projecdo de S; no plano z'Oy’.
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1.7 Banho térmico
Nos modelos abordados s6 as interacoes entre vizinhos préximos contribuem para a energia de um spin. Da
relacdo de Boltzmann (2), a distribuigdo de um spin é
P(S;,H;) = Cexp(—FE;3) = Cexp(8S; - H;)

Entao, gerando S; conforme essa distribui¢do cumpre-se diretamente a condi¢do do balanco detalhado. Nisso

consiste o algoritmo do banho térmico.



Sendo « o angulo entre S; e Hj e v o Angulo azimutal definido pela projecao de S; em um plano perpendicular
a H; (figura 5), determina-se a constante C impondo a normalizagao,

2m ™ 2m ™
1= / / P(S;,H;)sinadady = C/ / exp(BS; H; cos o) sin adady
o Jo o Jo

Escrevendo w = S H;, obtém-se

o w
~ 2sinhw
Pode-se com isso gerar « e v a partir de dois nimeros aleatérios A e B, cada um distribuido uniformemente
em [0, 1].

Uma vez que P(S;,H;) nao depende de =, deve ser sorteado em uma distribui¢do uniforme em [0, 27].

v =21A

Por sua vez, encontra-se  impondo

[e3 (0% COs &«
. . w
B= / Psina/da’ = / exp(w cos ) sina’da’ = / exp(w cos a’)d cos o’
0 0 0

2 sinh w  2sinhw

~ P / .
e entdo, com ' = cosa, obtém-se, B = (e — e“?)/(2sinh w). Invertendo,

In[l — B(1 — e=2v)]

Determinou-se assim S; com respeito a H;, isto é, ao sistema de coordenadas (2',y’, 2’).

=1+

S; =sinacosyd’ +sinasiny g + cosa 2’

Mas isso nao basta: Uma vez que cada spin estard sob a acao de um campo local diferente, é necessario
expressar S; em relagdo a um sistema de coordenadas universal (z,y, z).

Definam-se os angulos 6 polar e ¢ azimutal em relagio ao sistema universal (z,y, z) tais que

H, H, H,
cos = —=, sinf =+/1—cos?0, cos¢ = , sing = Y 13
H ¢ Hsind ¢ Hsind (13)
Entao, por fim, tem-se a expressdo de um spin ¢ em relacao a esse sistema:
S? = sina cosy cos  cos ¢ — sin asin -y sin ¢ + cos asin 6 cos ¢
SY = sin avcosy cos 0 sin ¢ — sin asiny cos ¢ + cos asin 0 sin ¢ (14)

S? = cosacosf — sin o cosysin 0

1.7.1 Implementagao no modelo de Heisenberg

Em uma rede de spins LxL, come¢ando com ¢ =1,
1. Afere-se o campo local H;, dado por (12), atuando no spin i;

—2w
2. Geram-se dois nimeros aleatorios A e B e, com eles, vy =21Aex =1+ W;

3. Calculam-se os senos e cossenos dos angulos:



e a: cosa =z, sina =1 — cos? q

e ~: Diretamente;

e e ¢: Conforme (13).
4. Atribui-se a S; as componentes dadas por (14);
5. Escolhe-se o proximo sitio (i =i + 1) e repetem-se os passos até que toda a rede tenha sido percorrida.

Este algoritmo tem uma clara vantagem sobre o de Metrépolis: Ele nao gasta tempo computacional rejeitando
uma acdo (a taxa de aceitagdo é unitaria). Todavia, a desvantagem é que cada passo ¢ mais lento devido a

maior quantidade de operacoes.

1.8 Minimizacao

Procura o estado fundamental a partir de uma configuracao de spins dada. Esta, na pratica, ndo deve ser
qualquer, pois o algoritmo é susceptivel a ficar preso em estados metaestaveis. Assim, é preferivel fornecer uma
configuracdo ja na mais baixa temperatura simulada, que estara mais proxima ao estado fundamental.

Para cada spin da rede:
1. Determina-se o campo local Hy, dado por (12) agindo em um sitio;
2. Alinha-se o spin desse sitio antiparalelamente com o campo local.

Repete-se o procedimento até que a diferenca de energia em cada sitio apds a varredura seja menor que um

valor fixo (usou-se 1-107?).

1.9 Estrutura dos programas

Cada programa completo, cuja estrutura mostrada na figura 6, comeca definindo com uma lista de tempera-
turas e varios parametros, tal como o tamanho do lado L da rede, os paramtros de ligacao J1 e J2, o nimero de
varreduras de termalizacao NLIX0 e de amostragem NVAR, entre outros. Em seguida, constroem-se as redes de
vizinhos, duas matrizes L? x 4 que guardam os quatro vizinhos de cada um dos L? sitios, uma para primeiros
e outra para segundos vizinhos.

O cerne do programa (em laranja) inicia com a leitura de uma temperatura T da lista fornecida, com a qual
sdo feitas NLIX0 varreduras de termalizagdo com um algoritmo apropriado (Metropolis, banho térmico ou Wolff)
e com 0 passo microcandnico. Terminadas, sao feitas outras NVAR. Em cada uma destas, apés se aplicarem os
algoritmos, calcula-se cada varidvel termodinamica de interesse (na figura 6, a energia E) , que, por sua vez, é
somada a uma acumuladora (na figura, EM). Terminadas as NVAR varreduras, guarda-se em um arquivo o valor
médio da variavel fisica (EM/NVAR) e a temperatura T correspondente, reinicializa-se EM=0 e repete-se o cerne
com outra temperatura.

Por construgdo, o fluxo de execugdo sai do cerne na ultima e mais baixa temperatura da lista. Assim, o
sistema estd em uma configuragdo apropriada para ser minimizado, com menor chance de ficar preso em minimos
locais.

A etapa de termalizacdo garante que a configuragido de spins é representativa da temperatura em que esta.
Afinal, cada vez que o cerne é invocado para uma temperatura T, o sistema acabou de ser simulado varias
em uma outra temperatura, proxima porém diferente de T. Suprimir essa etapa resultaria na adulteracdo das
meédias, porque seriam coletadas diversas configuragoes correlacionadas a sistemas em outra temperatura.

Com exce¢io do gerador de numeros pseudoaleatorios KISS05 [3], os codigos para as simulagoes foram todos

integralmente escritos pelo autor em FORTRAN 90.



Figura 6: Estrutura de um programa
incorporando um algoritmo de Monte
Carlo.

Definicdo de pardmetros
(J1 e J2, 1, lista de temperaturas, ...)

Construcdo da rede de 1° vizinhos

Construcdo da rede de 2° vizinhos

Amostragem (para cada T):

Termalizacdo — NL IX0 varreduras:

Metropolis / Banho térmico
Opcional: Microcanénico

Amostragem — NVAR varreduras:

Figura 7: Coeficiente de Binder U e calor especifico C de re-
des LxL em funcao da temperatura T no modelo de Heisenberg
(J1;J2) = (1;0) usando o algoritmo de Metropolis. As curvas sio
caracteristicas da auséncia de transicao de fase.
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Metropolis / Banho térmico
Opcional: Microcanénico
Acumulacéo das variaveis
(EM=EM+E)

Guardar em arquivo EM/NVAR e T
Reiniciar EM: EM=0 ok

Minimizacé&o

1.10 CaAlculo das barras de erros

Para a determinacdo do erro da medida foi adotado o método de blocagem, que consiste em subdividir as
varreduras de amostragem NVAR em NSUB blocos e calcular a flutuagao de cada variavel termodinimica com base
nas médias em cada um desses blocos. Entao, o desvio padrao da varidvel X é

ox =\ g (%)~ (02) (15)

Tal método foi escolhido porque ha quantidades que nao sao definidas a cada instante de tempo — isto &,
a cada varredura de Monte Carlo — como por exemplo o calor especifico e a susceptibilidade magnética.

Além disso, configuracoes separadas por curtos intervalos de tempo estdo correlacionadas. J4 que as con-
figuragoes em diferentes blocos estdo descorrelacionadas, nota-se que a blocagem é uma maneira adequada de

tratar os dados.

2 Analise do modelo de Heisenberg com apenas primeiros vizinhos

No modelo de primeiros vizinhos, foram utilizados J; = 1 e, obviamente, .J5 = 0.

A mais notéavel consequéncia de fornecer aos spins liberdade rotacional é a perda da transicao de fase, como
se verifica na anélise do cumulante de Binder, o qual nao apresenta interseccoes, e do calor especifico, cujas
curvas pouco mudam com L (gréfico 7).

Por agora os spins terem liberdade rotacional nos angulos 6 e ¢, pode-se expandir a contribuicao de cada

spin para a energia em série de Taylor:

E(0,¢) = E(fo, ¢0) + Eg(0o, $0)(0 — 0o) + Ey (00, do) (¢ — ¢o)+
=[Epo(00,60)(0 — 00)* + Epp (00, $0) (¢ — ¢0)* + 2Eg4 (00, $0) (6 — 00) (¢ — ¢o)]

N =



Visto que a expanséo é valida para T" — 0 e que na temperatura zero E(0, ¢) estd em um minimo, os termos
lineares sao nulos.

Como tratamos os spins como vetores classicos, o teorema da equiparticdo da energia associa a cada termo
quadratico kgT/2 de energia média, entdo, somando a contribuicdo dos Ng;; spins da rede, prevé-se Ngikp
para o calor especifico total e kg para o calor especifico por sitio. Assim, enquanto no modelo de Ising o calor
especifico parte da origem, no de Heisenberg deve partir de (0,1) (lembrando que fizemos kg = 1), e isso é
justamente o observado no grafico 7.

3 Anilise do modelo de Heisenberg com segundos vizinhos

E documentado na literatura [1] que uma transicio de fase ocorre se Jy/J; > 0,5 e ndo ocorre se Jo/J; < 0,5,
o que foi reproduzido neste estudo. A diferenca entre esses dois casos é o estado fundamental, que é a fase de
Néel, se Jo/J1 < 0,5, e a fase de tiras, se Jo/J; > 0,5 (figura 3). Os resultados sdo exibidos nos graficos, 8, 9 e
10, com Jy = 0,25, 0,55 € 0,6.

Figura 8: Coeficiente de Binder U e calor especifico C de redes LxL em funcao da temperatura T no modelo de
Heisenberg com (Ji; J2) = (1;0,25) usando o algoritmo do banho térmico.
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Figura 9: Coeficiente de Binder U e calor especifico C de redes LxL em funcao da temperatura T no modelo de
Heisenberg com (Ji;J2) = (1;0,55) usando o algoritmo de Metropolis.
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E imediato verificar que uma transicio de fase ocorre para J; = 0,55 e J, = 0,60. Analisando os graficos de

U, as temperaturas criticas sdo determinadas: para (Ji;J2) = (1;0,55), T. = 0,197 & 0,001, e para (Ji;J2) =
(1;0,60), T, = 0,255 + 0,001. Tais temperaturas criticas contrastam com a do modelo de Ising classico (com



Figura 10: Coeficiente de Binder U e calor especifico C de redes LxL em funcao da temperatura T no modelo

de Heisenberg com (J1; J2) = (1;0,60) usando o algoritmo de Metropolis.
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(J1;J2) = (1;0)), cuja T, é aproximadamente dez vezes maior. Essa diferenga é devida a frustragdo e torna
mais demorada a execucao dos algoritmos de amostragem:.

Os estados fundamentais, obtidos por meio do algoritmo de minimizacao, sao degenerados. Constituem de
tiras horizontais ou verticais, que sdo denotados ordenamentos @ = (0,7) e @ = (m,0). Cada uma dessas fases
é bem descrita pelo parAmetro de ordem o: ¢ = 1 para @ = (0,7) e 0 = —1 para Q = (7,0) (figura 3). A
existéncia de um parametro de ordem discreto sugere uma analogia com o modelo de Ising.

No modelo de Ising classico também existe uma degenerescéncia no estado fundamental: todos os spins
alinhados "para cima" ou "para baixo". A natureza da degenerescéncia encontrada nos dois modelos — de
Heisenberg para segundos vizinhos com J5/J; > 0,5 e de Ising ferromagnético — é a mesma, originada pela
simetria discreta entre as tiras @ = (0,7) e @ = (,0), no primeiro, e entre os estados todos "para cima" e
todos "para baixo" no segundo. Assim, faz sentido esperar a transi¢do observada neste modelo de Heisenberg
com Jy/J; > 0,5 e que ela seja do mesmo tipo da transi¢ao de Ising.

A fim de confirmar essa hipotese, pode-se fazer um escalonamento de tamanho finito e observar se os mesmos
expoentes criticos do modelo de Ising (a« = 0,8 = 1/8,7 = 7/4,v = 1) produzem bons resultados (figura 11).
Embora o encaixe das curvas nao seja perfeito devido & supressido de T, no modelo de Heisenberg, percebe-se

que hé consisténcia na hipoétese.

Figura 11: Escalonamentos para o modelo de Ising com J; = 1 a esquerda e para o de Heisenberg com
(J1;J2) = (1;0,55) ao centro e (J1;J2) = (1;0,60) a direita, realizados a partir da susceptibilidade y, da
temperatura critica T, (2,26 para Ising, 0,197 e 0,255 para Heisenberg), da temperatura de simulac¢do 7', com
t =T/T. — 1, e do tamanho L de cada rede LxL. Os expoentes criticos sdo os de Ising, y =7/4ev =1. O
encaixe das curvas de Heisenberg indicam que as transi¢oes nos dois casos sao de mesma natureza de Ising.
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3.1 Introdugao de desordem

Introduz-se desordem no modelo ao alterar o J; — J1(1 + A) de uma tnica liga¢do horizontal da rede, e
observa-se que ainda sdo encontradas as fases Q = (0,7) e @ = (7,0) (figura 12), embora neste caso a energia
nao seja a mesma para ambas.

Da figura 12, a energia por sitio da configuracdo de tiras seria —2.J> na auséncia da ligagdo defeituosa —
é evidente que a parcela correspondente a J; na expressdo (7) seria nula. Considerar a ligagido defeituosa
introduz um fator +.J1A/Ny;: se as tiras forem verticais e —J;A/Ng;; se horizontais. Assim, nas condigbes de
A =0,5,J7 =1, Ng;; = 1600 apresentadas na figura 12, a energia por sitio é £ = —2Jo+J;A/Ng;; = —1,103125
ou —1,096875. Conforme mostra a tabela 1, isso é de fato observado.

Tabela 1: Energia de redes 40x40 minimizadas no modelo de Heisenberg com (Ji, J2) = (1;0,55) com J; de

uma unica ligagao alterado de 1 para 6. Um ordenamento tem mais baixa energia e por isso as fases de tiras
deixam de ser degeneradas.

Ordenamento # Configuracbes FEnergia esperada Menor energia obtida Maior energia obtida
Q = (m,0) 7 —1,1031250 —1,1031247 —1,1031162
Q= (0,7) 3 —1,0968750 —1,0968847 —1,0968757

Figura 12: Projegbes no plano XY do modelo de Heisenberg com (Ji,J2) = (1;0,55) e uma ligagdo cujo Jp
foi alterado de 1 para 6, a qual é destacada em vermelho. A esquerda, ordenamento @ = (0,7), e & direita,
Q@ = (7,0). Este ultimo passa a ter menor energia e portanto as duas fases de tiras ndo sdo mais degeneradas.

A cor indica a dire¢do do spin e o tamanho da seta, a magnitude da sua proje¢ao.

A
R ERREERRERRRERE!
o
SERRRERRRERRRRRRRE!
A
SEERRERRRERRRRRRRE
R R RN R
SERRRRRRRERRRRRRRE
FAAAA bbb bbb bbby bdy
SRERRRRRRRRRRRRRRE
BALEA R bbby bdy
SRRRRRRRRERRRRERRE
FAAEARE bbb bbby dbdy
SEERRERRRERRRRRRRE
R RSO RREN
SRRRERRRRERRRRRRRE,
R R RS ERRER
R RRRRRRRRRRRRE:
SRRSO RRE
REERRRRRERRRERRREE:

Assim, uma tnica ligacao defeituosa basta para a quebra da degenerescéncia do estado fundamental em um

sistema finito, o que sugere que a transi¢io de fase pode ser perdida também.

3.2 Aumento da desordem
Agora o valor de J; de cada ligacdo da rede é alterado conforme a regra

Jp — Jl(l +A), ser <0,5

(16)
Jy — Jl(l —A), ser > 0,5

em que r € [0,1] é um numero pseudoaleatério. Assim, em vez do escalar Ji, passa-se a ter a matriz J;’, em
que a entrada ij da o parametro da ligacao entre os spins ¢ e j. Com essa alteracao, efeitos curiosos podem ser

observados.
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Devido ao caréter aleatério do experimento, o processo todo, que antes da introducdo da desordem estava
sendo feito em uma configuragao apenas, passa a ser realizado repetidas vezes em véarias configuracoes, cada
qual com uma matriz de ij diferente. Assim, o calor especifico e o coeficiente de Binder apresentados a seguir
sdo as médias dos seus respectivos valores sobre o numero de configuragoes. A quantidade de configuragoes

amostradas em fun¢io de Jy, L e A consta na tabela 2.

Tabela 2: Numero de configuracoes de diferentes Jlij utilizadas na simulagao.

Jo L A  # Configuracoes Jo L A # Configuracoes
0,55 20 0,1 385 0,60 20 0,1 400
0,55 20 0,5 380 0,60 20 0,5 380
0,55 30 0,1 290 0,60 30 0,1 300
0,55 30 0,5 295 0,60 30 0,5 280
0,55 40 0,1 180 0,60 40 0,1 185
0,55 40 0,5 190 0,60 40 0,5 180
0,55 60 0,1 150 0,60 60 0,1 150
0,55 60 0,5 160 0,60 60 0,5 155

O coeficiente de Binder (grafico 14) sugere auséncia de transi¢ao de fase, embora as barras de erro dificultem
afirmar isso com certeza. A curva do calor especifico (grafico 13), entretanto, ndo deixa davidas de que a
transicao foi de fato destruida, pois os picos ndo aumentam com o tamanho L da rede e, além disso, com o

aumento de A, sdo aplainados.

Figura 13: Calor especifico C, obtido pelo algoritmo do banho térmico, de redes LxL em fun¢ao da temperatura
T com Jy = 0,55 ou Jo = 0,60 e desordem generalizada: para cada ligacao J; é escolhido aleatoriamente entre
14+ A el— A. Indica a auséncia de transi¢do de fase. A linha tracejada identifica T, no caso sem desordem.

J=0,55 J=0,60
2 T T ;I T T T T T T T 2 T T T '; T T T T T
: — L=60 A=0, ; L=20 A=0,1
| L=40 A=0,1/ | i L=40 A=0,1 ]
it L=20 A=0,1 ; — L=60 A=0,1
Ls il ¢ o— L=60 A=0,5 i o— L=20 A=0,5
ol /A o L=40 A=0,5|] 15 i o L=40 A=0,5|
/ A o— L=20 A=0,5 | o— L=60 A=0,5
[ [ 1 @) !
if .
| L il L | L | L | L 0 5 | L | .E | L | L |
0l 02 03 04 05 0l 0.2 0.3 0.4 0,5
T () T ()

As minimizag¢oes com A = 0,5 mostram configuracoes bastante desordenadas, em que, contudo, podem
ser encontradas regioes com spins formando um padrido, denominadas dominios de spin. Quando A = 0,1, os
dominios sdo expressivamente maiores. (Amostras representativas das minimizagoes estdo nas figuras 16 e 17,
em que as projecoes dos spins no plano XY foram todas normalizadas em um mesmo comprimento para melhor
visualizacdo.) Isso é endossado pelo grafico da magnetizagio |o|, dada por (8), na figura 15. Ela é atenuada
para um maior valor de A, sugerindo uma reduc¢do na prevaléncia e extensido dominios de tiras. Portanto, como
esperado, os dados coletados permitem afirmar que a desordem serd maior quanto maior for A.

O valor absoluto de o foi usado porque o sistema é inicialmente isotrépico e, mesmo apés a adicao da

desordem (16), as fases @ = (0,7) e @ = (m,0) continuam sendo equiprovaveis. Como uma tem o =1 e outra
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Figura 14: Coeficiente de Binder U, obtido pelo algoritmo do banho térmico, de redes LxL em funcao da tempe-
ratura T com J, = 0,55 ou Jy = 0,60 e desordem generalizada: para cada ligacao J; é escolhido aleatoriamente
entre 1 + Ael—A, A=0,1. Indica a auséncia de transi¢cdo de fase. A linha tracejada identifica T, no caso
sem desordem.

J=0,60

J=0,55

0,8f

0,6

0,4

0,2

] . i . ] i —
0 0,1 0,2 0,3 0,4 0,1 0,2 0,3 04

T () T ()

Figura 15: |o| e Myo, obtidos pelo algoritmo do banho térmico, de redes 20x20 em fungdo da temperatura T
com Jy = 0,55 e J; = 0,60 e desordem generalizada: para cada ligacdo J; é escolhido aleatoriamente entre 1+ A
el—A.

1 T T T T T T T 0,7 T T T T T t
— J2 =0,55 A=0,0
+—1,=0,55 A=0,0 — J,=0,55 A=0,1];
0,8F — J,=0,55 A=0,1| A 0.6L 2_OSSA 0,5]]
— J1,=0,55 A=0,5| ] ’ I J,=0,60 A=0,0
0.6 J,=0,60 A=0,0| | : — J,=0,60 A=0,1
- — 3,70,60 A=0,1| | 2 0.5 B 1,=0,60 A=0,5 ]
= J,=0,60 A=0,5 = :
4 ] - S/\\
' 0.4} / T :
0,21 7
e . I
0 L | L | L | L | L | 0 3 L | L | L | L | ! |
0 0,1 0,2 0,3 0,4 0,5 0 0,1 0,2 0,3 0.4 0,5
T () T)
o = —1, o valor da média de o sobre as configuracoes seria nulo.

No grafico de |o| chama a atengdo a recessdo do parametro de ordem para A = 0,1 em baixas temperaturas,
menores que T = 0,15 para .J, = 0,60 e menores que 7' = 0,10 para Jo = 0,55. Esse curioso efeito é entendido

com um outro parametro de ordem,
Moo = [(S; = Sk) A (S; — S| /4

indicativo de uma outra fase, a anticolinear (figura 3), cuja apari¢io é documentada em redes com vacincias
[4]. Assim como as vacincias, a desordem faz com que Mgy cresca justamente na regido mencionada, em

que |o| decresce (figura 15), parcialmente suprimindo a ordem das tiras e sugerindo uma associatividade entre
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vacancias e desordem nos acoplamentos. Nesta investigago, limitou-se apenas a constata-la como justificativa
para a recessao de |o|.

Verifica-se, ainda, que My é monotona se A = 0,5, de forma que, nesse caso, a curva de |o| também é
monotona.
Figura 16: Projecoes normalizadas no plano XY de configuragoes minimizadas do modelo de Heisenberg de

segundos vizinhos com desordem em toda a rede 20x20, com (Ji;J3) = (1;0,55) e A = 0,1. A cor indica a
direcdo do spin. O retangulo rosa indica um dominio anticolinear e o preto, um de tiras.

Figura 17: Projecoes normalizadas no plano XY de configuragoes minimizadas do modelo de Heisenberg de
segundos vizinhos com desordem em toda a rede 20x20, com (Ji;J3) = (1;0,55) e A = 0,5. A cor indica a
direcao do spin.

-
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4 Conclusoes

Foram estudados spins em redes bidimensionais quadradas LxL. No modelo de Heisenberg de primeiros
vizinhos, diferentemente do modelo de Ising, confere-se aos spins liberdade rotacional, e como consequéncia
ocorre a perda da transicao de fase.

Se adicionada a interacdo entre segundos vizinhos ao modelo de Heisenberg, uma transi¢do ocorre se Jo/J; >
0,5. Nesse caso, é detectada por um outro parametro de ordem, denotado o. Os estados fundamentais sao de
tiras horizontais ou verticais (ordenamentos @ = (0,7) ou @ = (7, 0)) e, tal qual no modelo de Ising, a simetria
entre os estados fundamentais é discreta. Isso sugere que a transi¢io seja de mesma natureza que no modelo de
Ising, o que é confirmado pelo escalonamento de tamanho finito.

A introducdo de uma ligacdo defeituosa quebra a degenerescéncia do estado fundamental em um sistema
finito, embora os dois estados de tiras continuem aparecendo. Quando todas as liga¢oes de primeiro vizinho sao
alteradas, perde-se a transicdo, e alteragbes mais vigorosas (com um pardmetro A maior) geram configuragoes
minimizadas mais aleatérias, com dominios menores. Isso sugere que a transicao de fase que aparece pela
frustracao nao sobrevive & introducao de desordem. Esse é um resultado interessante a ser explorado pelo grupo

no futuro.

5 Apéndice: Algoritmo de Wollft

Durante este projeto, também foi implementado o algoritmo de Wolff, o qual, diferentemente de Metropolis
e banho térmico, é um algoritmo que gira aglomerados de spins em vez de spins individuais.

A descricao mais simples se da, naturalmente, no modelo de Ising. Inicialmente apenas um spin da rede,
escolhido aleatoriamente e denominado semente, integra o aglomerado. Cada vizinho seu é entdo considerado.
Se estiver na mesma direcao da semente, é adicionado ao aglomerado com probabilidade P,4.. Cada novo
integrante do aglomerado é selecionado uma tnica vez e tem seus vizinhos também considerados e adicionados
ao aglomerado com probabilidade P,4.. O processo s6 acaba quando todos os spins do aglomerado tiverem sido
selecionados uma vez. No fim, tem-se um aglomerado como o da figura 18.

Para determinar a razao entre as probabilidades de selecao g.» € gpq, considere a como o estado dado na
figura 18 e b como aquele em que os spins adicionados ao aglomerado foram virados. Sejam p as ligacoes
quebradas no processo a — b e ¢ em b — a. A probabilidade de ndo adicionar os spins das liga¢oes quebradas

por a = b é (1 — Puy.)?; por b — a, (1 — P,q.)?. Portanto,

Aabgab _ Aab
Abagba Aba

(1 = Page)?’™ 1 = exp[—B(Ey — E4)] (17)

Para cada uma das p ligacoes quebradas, a energia inicial era —J e a final, +J, resultando em um saldo +2.J
de energia apds a alteracdo. O restante das ligagoes, que sdo ¢, ddo um saldo —2J. Assim, E, — E, = 2J(p—q)
e

Aabgab _ Aab
Abagba Aba

(1 = Page)?™ 7 = exp[-2JB(p — q)] (18)
Rearranjando os termos, obtém-se a razao das taxas de aceitacao

Aab
Aba

= [(1 — Pagc)e®”?]177 (19)

Entdo convenientemente faz-se P,q. = 1 —e~2/8, de modo que o lado direito de (19) é 1 e se pode escolher

a melhor taxa de aceitacao possivel, A,, = 1 = Ap,, ou seja, todo aglomerado gerado é sempre virado.
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Constata-se que a ergodicidade do algoritmo é satisfeita tomando um aglomerado de apenas um spin, de

forma analoga ao que acontece no Metropolis.

Figura 18: Um aglomerado, marcado com ’X’, gerado Figura 19: Nimero N de sitios do aglomerado por si-

pelo algoritmo de Wolff no modelo de Ising. Cada cor tios da rede LxL em func¢do da temperatura T com o

indica uma das duas orientagdes de spin, e os tragos algoritmo de Wolff no modelo de Ising (I) ferromagné-

azuis-claro mostram liga¢des que serdo quebradas ao tico, (Ji;J2) = (1;0), ou Heisenberg (H) com segundos

girar o aglomerado. vizinhos, (J1;J2) = (1;0,55). As linhas tracejadas de-
marcam 7T,.
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5.1 Implementacao no modelo de Heisenberg
Em uma rede quadrada de spins, de dimensoes LxL,
1. Gera-se uma diregdo d = (z,y, z) aleatoria, com |d| = 1;
2. Cria-se uma variavel chamada aglomerado;
3. Um sitio aleatorio da rede, denominado semente, é colocado no aglomerado;

4. Para cada spin S; no aglomerado, verifica-se cada vizinho S;, o qual é adicionado ao aglomerado com
probabilidade P =1 — exp 724 (S; - d)(S; - d);

5. Invertem-se todos os spins do aglomerado.

N é o nimero de elementos no aglomerado consolidado divido pelo nimero de sitios da rede apés a varredura.

Diferentemente do algoritmo de Metropolis, o de Wolff em geral ndo visita todo sitio da rede em cada varredura.

5.2 Resultados — Wolff

O algoritmo de Wolff visa a otimizar a andlise para temperaturas préximas & critica, reduzindo as barras
de erro perto da transicdo em comparacao ao de Metropolis. Evidentemente, os valores em si devem ficar
inalterados, e é isso que se observa na figura 20.

Uma medida importante para aferir a eficiéncia do algoritmo é o tamanho do aglomerado. No modelo de
Ising, & proporc¢ao que a temperatura diminui, ele aumenta pois os spins tendem a estar alinhados, principalmente

em T < T.. O contrério ocorre para T > T, (grafico 19). Entretanto, no de Heisenberg nota-se que na regiao
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Figura 20: Calor especifico C de uma rede 60x60 e coeficiente de Binder U de uma rede 20x20 em funcao da
temperatura T para o modelo de Heisenberg com (Ji; J2) = (1;0,55). Os dados foram obtidos com os mesmos
ntimeros de amostragens NVAR e NLIX0, mas as barras de erro sao menores em Metropolis.
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da transicao, cuja temperatura critica é dez vezes menor que no modelo de Ising, o aglomerado j& abarca quase
toda a rede, de forma que o procedimento fica ineficiente, levando mais tempo em relagdo ao de Metropolis.
Nesse caso, o Wolff se comporta como representado na figura 21, virando um grande nimero de spins orientados
igualmente em vez de virar aqueles poucos que estao contrarios & direcdo da maioria. Embora tal processo seja
ineficiente e contraste com o fendmeno que ocorre fisicamente, ele ndo acarreta erros de medic¢ao, pois a energia
e a magnetizacdo, esta tomada em valor absoluto, sdo as mesmas. Ainda assim, como nao ha melhora nos
resultados — ao contrario, as barras de erro ficam maiores em relacdo ao de Metropolis, como mostra a figura
20 —, sua aplicacdo nao se justifica, e é por isso que se recorreu apenas a Metropolis e banho térmico para as

analises centrais deste estudo.

Figura 21: Comparacao entre o sistema real e o simulado pelo algoritmo de Wolff no modelo de Heisenberg em
temperaturas proximas & critica. Wolff vira os spins na dire¢cao dominante, enquanto o sistema real tende a
virar 0s poucos spins que nao apontam na direcao dominante.

Fisico
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